Question 1 Determine the solution set to the following system of equations:

	$\begin{array}{c} x_1 \\ -x_1 \end{array}$	+	x_2	+	x_3	+	$3x_4 \\ 4x_4$	+ +	$4x_5 \\ 4x_5$	=		$ \begin{array}{c} 2 \\ 1 \\ 0 \end{array} $	
	x_1	+	x_2	I	~3	+	x_4	I	1.05	=	-	-1	
Question 2								Гı	1	0	0	0]	
Consider the coeffic	ient m	atriz	x froi	n pi	roble	m 1,	A =	$\begin{vmatrix} 1 \\ -1 \\ 0 \\ 1 \end{vmatrix}$	1 0 1	0 1 1	0 3 4	$\begin{bmatrix} 0\\4\\4\\0\end{bmatrix}$	•
a) Find a basis for the	kernel	of A	1.					Γı	1	0	T	0]	

- b) The kernel of A is a _____-dimensional subspace of _____-dimensional Euclidean space.
- c) Find a basis for the image of A.
- d) The image of A is a _____-dimensional subspace of _____-dimensional Euclidean space.

Question 3 Let A be an $n \times n$ matrix. If A is invertible can you conclude that...

a) A is row equivalent to the identity matrix?	YES	NO
b) the rows of A are linearly independent?	YES	NO
c) A is a diagonalizable matrix?	YES	NO
d) 0 is not an eigenvalue of A ?	YES	NO
e) the system $A\mathbf{x} = 0$ has infinitely many solutions?	YES	NO
f) the determinant of A is non-zero?	YES	NO
g) the system $A\mathbf{x} = \mathbf{b}$ has a solution for all $n \times 1$ matrices \mathbf{b} ?	YES	NO

Question 4 Let $A = \begin{bmatrix} 2 & 2 \\ 7 & -3 \end{bmatrix}$.

- a) Compute the eigenvalues of A.
- b) Compute the associated eigenvectors of A.
- c) Find a matrix P so that $P^{-1}AP$ is a diagonal matrix.
- d) Use your answer to part c) to compute A^7 .

Question 5 Let W denote the subspace of \mathbb{R}^3 spanned by the vectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 0 \\ 3 \\ 1 \end{bmatrix}$

 $\begin{bmatrix} -1 \\ 2 \end{bmatrix}.$

a) What is the dimension of W? Explain.

b) Find a basis for W.

Question 6 Let A be a 5×5 matrix with eigenvalues $\lambda_1 = -1$, $\lambda_2 = 0$, $\lambda_3 = 2$, $\lambda_4 = 3$, $\lambda_5 = 5$. Compute det $(A^2 - 9I)$. Explain your answer. Hint: What is det(A - 3I)?

Question 7 Let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation defined by

$$T(x_1, x_2, x_3) = (x_1 + x_2 + 2x_3, x_1 + x_3, 2x_1 + x_2 + 3x_3).$$

- a) Find the standard matrix for the linear transformation T.
- b) Find a basis for the image of T.

Question 8 Consider the basis $S = {\vec{v_1}, \vec{v_2}}$ of \mathbb{R}^2 where $\vec{v_1} = (1, -1)$, and $\vec{v_2} = (2, 0)$. Let T be a linear operator from \mathbb{R}^2 to \mathbb{R}^4 such that $T(\vec{v}_1) = (1,0,1,0)$, and $T(\vec{v}_2) = (0,0,2,1)$. Find the general formula for $T(\vec{x})$.

Question 9 Let $W \subset \mathbb{R}^4$ be the subspace spanned by the vectors $\vec{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} -1 \\ -2 \\ 3 \\ 4 \end{bmatrix}$, and

 $\begin{bmatrix} 4 \\ 1 \\ -1 \\ 4 \end{bmatrix}$. Find an orthonormal basis for W. What is the QR factorization of $[\vec{v}_1 \, \vec{v}_2 \, \vec{v}_3]$? Find the projection of the vector $\vec{u} = \begin{bmatrix} 4 \\ 5 \\ 6 \\ 7 \end{bmatrix}$ onto the subspace spanned by \vec{v}_1 and \vec{v}_2 . Find the 3-dimensional volume of the parallelepiped formed by \vec{v}_1 \vec{v}_2 \vec{v}_3

volume of the parallelepiped formed by $\vec{v}_1 \vec{v}_2, \vec{v}_3$.

Question 10 Compute the inverse and determinant of a 4×4 matrix.