Question 1 Determine the solution set to the following system of equations:

$$
\begin{aligned}
& \begin{array}{l}
x_{1}+x_{2}=2 \\
-x_{1}+x_{3}+3 x_{4}+4 x_{5}=1
\end{array} \\
& \begin{aligned}
x_{2}+x_{3}+4 x_{4}+4 x_{5} & =0 \\
x_{1}+x_{2} & =-1
\end{aligned}
\end{aligned}
$$

Question 2
Consider the coefficient matrix from problem 1, $A=\left[\begin{array}{ccccc}1 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 3 & 4 \\ 0 & 1 & 1 & 4 & 4 \\ 1 & 1 & 0 & 1 & 0\end{array}\right]$.
a) Find a basis for the kernel of A.
b) The kernel of A is a \qquad -dimensional subspace of \qquad -dimensional Euclidean space.
c) Find a basis for the image of A.
d) The image of A is a \qquad -dimensional subspace of \qquad -dimensional Euclidean space.

Question 3 Let A be an $n \times n$ matrix. If A is invertible can you conclude that...

a) A is row equivalent to the identity matrix?	YES	NO
b) the rows of A are linearly independent?	YES	NO
c) A is a diagonalizable matrix?	YES	NO
d) 0 is not an eigenvalue of A ?	YES	NO
e) the system $A \mathbf{x}=0$ has infinitely many solutions?	YES	NO
f) the determinant of A is non-zero?	YES	NO
g) the system $A \mathbf{x}=\mathbf{b}$ has a solution for all $n \times 1$ matrices \mathbf{b} ?	YES	NO

Question 4 Let $A=\left[\begin{array}{cc}2 & 2 \\ 7 & -3\end{array}\right]$.
a) Compute the eigenvalues of A.
b) Compute the associated eigenvectors of A.
c) Find a matrix P so that $P^{-1} A P$ is a diagonal matrix.
d) Use your answer to part c) to compute A^{7}.

Question 5 Let W denote the subspace of \mathbb{R}^{3} spanned by the vectors $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}0 \\ 3 \\ 1\end{array}\right], \vec{v}_{3}=$ $\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$.
a) What is the dimension of W ? Explain.
b) Find a basis for W.

Question 6 Let A be a 5×5 matrix with eigenvalues $\lambda_{1}=-1, \lambda_{2}=0, \lambda_{3}=2, \lambda_{4}=3, \lambda_{5}=5$. Compute $\operatorname{det}\left(A^{2}-9 I\right)$. Explain your answer. Hint: What is $\operatorname{det}(A-3 I)$?

Question 7 Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}+2 x_{3}, x_{1}+x_{3}, 2 x_{1}+x_{2}+3 x_{3}\right) .
$$

a) Find the standard matrix for the linear transformation T.
b) Find a basis for the image of T.

Question 8 Consider the basis $S=\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ of \mathbb{R}^{2} where $\vec{v}_{1}=(1,-1)$, and $\vec{v}_{2}=(2,0)$. Let T be a linear operator from \mathbb{R}^{2} to \mathbb{R}^{4} such that $T\left(\vec{v}_{1}\right)=(1,0,1,0)$, and $T\left(\vec{v}_{2}\right)=(0,0,2,1)$. Find the general formula for $T(\vec{x})$.

Question 9 Let $W \subset \mathbb{R}^{4}$ be the subspace spanned by the vectors $\vec{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}-1 \\ -2 \\ 3 \\ 4\end{array}\right]$, and $\vec{v}_{3}=\left[\begin{array}{c}0 \\ 1 \\ -1 \\ 4\end{array}\right]$. Find an orthonormal basis for W. What is the $Q R$ factorization of $\left[\vec{v}_{1} \vec{v}_{2} \vec{v}_{3}\right]$? Find the projection of the vector $\vec{u}=\left[\begin{array}{l}4 \\ 5 \\ 6 \\ 7\end{array}\right]$ onto the subspace spanned by \vec{v}_{1} and \vec{v}_{2}. Find the 3-dimensional
volume of the parallelepiped formed by $\vec{v}_{1} \vec{v}_{2}, \vec{v}_{3}$. volume of the parallelepiped formed by $\vec{v}_{1} \vec{v}_{2}, \vec{v}_{3}$.

Question 10 Compute the inverse and determinant of a 4×4 matrix.

